Explorer N - gram language models for massively parallel devices

نویسندگان

  • Nikolay Bogoychev
  • Adam Lopez
چکیده

For many applications, the query speed of N -gram language models is a computational bottleneck. Although massively parallel hardware like GPUs offer a potential solution to this bottleneck, exploiting this hardware requires a careful rethinking of basic algorithms and data structures. We present the first language model designed for such hardware, using B-trees to maximize data parallelism and minimize memory footprint and latency. Compared with a single-threaded instance of KenLM (Heafield, 2011), a highly optimized CPUbased language model, our GPU implementation produces identical results with a smaller memory footprint and a sixfold increase in throughput on a batch query task. When we saturate both devices, the GPU delivers nearly twice the throughput per hardware dollar even when the CPU implementation uses faster data structures. Our implementation is freely available at https://github.com/XapaJIaMnu/gLM

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

N-gram language models for massively parallel devices

For many applications, the query speed of N -gram language models is a computational bottleneck. Although massively parallel hardware like GPUs offer a potential solution to this bottleneck, exploiting this hardware requires a careful rethinking of basic algorithms and data structures. We present the first language model designed for such hardware, using B-trees to maximize data parallelism and...

متن کامل

New parallel programming language design: a bridge between brain models and multi-core/many-core computers?

The recurrent theme of this paper is that sequences of long temporal patterns as opposed to sequences of simple statements are to be fed into computation devices, being them (new proposed) models for brain activity or multi-core/many-core computers. In such models, parts of these long temporal patterns are already committed while other are predicted. This combination of matching patterns and ma...

متن کامل

An Overview of OCore : A Massively Parallel Object-based Language

In this paper we propose a massively parallel object-based language, OCore, as a research vehicle for massively parallel computation models. In addition to the fundamentals of existing parallel object-oriented languages, OCore introduces the notion of community , a structured set of objects that makes the distributed processing of messages possible together with their e cient implementation. OC...

متن کامل

Compact n-gram models by incremental g

This work concerns building n-gram language models that are suitable for large vocabulary speech recognition in devices that have a restricted amount of memory and space available. Our target language is Finnish, and in order to evade the problems of its rich morphology, we use sub-word units, morphs, as model units instead of the words. In the proposed model we apply incremental growing and cl...

متن کامل

Bilingual Word Embeddings from Non-Parallel Document-Aligned Data Applied to Bilingual Lexicon Induction

We propose a simple yet effective approach to learning bilingual word embeddings (BWEs) from non-parallel document-aligned data (based on the omnipresent skip-gram model), and its application to bilingual lexicon induction (BLI). We demonstrate the utility of the induced BWEs in the BLI task by reporting on benchmarking BLI datasets for three language pairs: (1) We show that our BWE-based BLI m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017